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Abstract 

The V - N  sector of a modified Lee model is solved by dispersion theory techniques. The 
method of solution clearly indicates the importance of asymptotic conditions in solving 
bound-state problems. 

1. Introduction 

The V -  N sector of the Lee model (Lee, 1954) has been considered by 
Weinberg (1955) and from the viewpoint of dispersion theory of Scarfone 
(1962). In this paper we re-examine the problem of determining the eigen- 
value condition for the V + N potential energy using dispersion theory. We 
show that the problem can be solved without having to consider two vertex 
functions F =- <VIfNIB> and F' = <NI fv IB  ) as done by Scarfone. The 
interesting point of our method is that it clearly shows the importance of 
asymptotic conditions in bound-state problems. 

It will be recalled that the Lee model describes the coupling of two 
infinitely heavy fermions V and N with a relativistic boson such that 
V ~ N + 0 is the basic interaction. Following Scarfone we take the V + N 
separation to be zero and assume that all field operators satisfy commutation 
relations. In Section 2 we describe the model and sketch the normal simple 
method of solving the V+ N energy eigenvalue problem. In Section 3 we 
give the dispersion theory method. 

2. Eigenvalue Condition by Standard Methods 

The Hamiltonian which describes the Lee model is given by 

H = (m + Jm)Z~Ov + ipv + m~kN + ON + Z oak + a~ + g~Ov + ON + gA + ON + ~Ov 
k 

(2.1) 
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where 
=%" u(co) 

A ~ (2~--~i n ak [co = (k'- + #2)1/21 (2.2) 

The cut-off function u(co) assures the convergence of  all integrals and is 
chosen such that the theory contains no ghost effects. The operator Ov is the 
renormalised V particle field operator, g is the renormalised coupling 
constant and Z is a renormalisation constant. It is convenient to assume 
that V and N have the same mass. As usual, we are quantising in a box of  
volume f2 which eventually becomes infinite. Throughout this paper all 
field operators will obey commutation relations 

+ 1 
[at,  ak +] = bk,k,, [Ou, ~bN +] = 1, [Ov, ~kv ] = 2 [ak, as] 

= I f  N, CN] = [r  ~v]  = 0 (2.3) 

Having chosen Z such that <ol•vl v )  = 1, the eigenvalue problem H I V) = 
ml V) yields 

g2 x--, uZ(co) 
6m = 2Zf2 m.'~. oJ 3 (2.4) 

k 

g2 ~ u2(co) 
z = 1 - f 0  @ co~ (2.5) 

These results are also obtainable by dispersion methods (DeCelles & 
Feldman, 1959). We review, following Scarfone (1962), the discrete V +  N 
spectrum of the above model. The corresponding problem in the ordinary 
Lee theory with finite heavy particle separation has been studied by Wein- 
berg (1955). 

We know from the selection rules that IB) has the following mixture of  
bare states 

I B ) = 1I V, IN) + E r IZU, I k)  (2.6) 
k 

where 
IlV, IN> = 4,v+ ~RN+IO> 

12N' Ik) = ~22 ~ku+ ~'u+ ak+[0) 

We observe here that the Bose character of  the heavy particle operator 
permits us to have more than one of them at the same point in a given state. 
This is the motivation behind the commutation relations (2.3). Calling the 
eigenvalue of  the state (2.6) (Zm  + coo) and using (2.1) to (2.4) we obtain 

coo = 6m + g v ' 2  
U(co) r 

k (2c~ (2.7) 

(co g u(o)) - coo) e lk>  = - 2  ~,,2 (2~-ff) , 2  (2.8)  
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The factor (co - COo) in (2.8), where co is the energy of the light particle and 
coo the potential energy of interaction (recall there are no recoil effects), 
does not vanish, since we are only concerned with bound states. Eliminating 
r from (2.7) and (2.8) we find 

g2 ~., u2(co) 1 (2.9) 
co~  k~-, co co-coo 

for the determination of the eigenvalue coo. With the help of (2.4) and (2.5) 
we can put (2.9) into the form 

1 - ]~(coo) = -2(COo)  ( 2 . 1 0 )  
where in general 

/~(co) - - co c0'3(co ' - co -- is) (2.11) 

g2 ~.~ u2(co) 
2(00) = 2acoo kdU (co - coo) (2.12) 

Equation (10) is the desired condition which gives coo as a function of the 
renormalised coupling constant and the cut-off functions. We now proceed 
to show that it is possible to reproduce condition (2.10) without knowing 
the state vectors. 

3. Eigenvalue Condition by Dispersion Methods 
We consider the vertex functiont 

F -- (Vl gN(0)l B> (3.1) 

where from the Heisenberg equation of motion for ~b~v we have 

gN(t ) = (-i  d + rn) ~/N(t ) = -gA+(t ) r ) (3.2) 

If  the V-particle is contracted in (3.1) we are led to the expression 
+ c o  

f dt exp (imt) (Ol[gv(t), gN(0)] 01 t)l B 7 (3.3) F i 
~oo 

where from the Heisenberg equation of motion for fly we have 

gv(t) - (- i  d +  m)~kv(t)=-6mev(t)-~kN(t)A(t) (3,4) 

while the equal time commutators resulting from the differentiation of the 
theta function gives zero. If  a complete set of intermediate states is inserted 

t This approach of considering vertex functions for investigating the properties of a 
composite particle is due to Blankenbecker, R. and Cook, L. F. (1960). Physical Review, 
119, 1745. 
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into (3.3) and the time integration performed after subjectingf(t) to a time 
translation we arrive at 

E ((0lgv[ S)  <SIGN] B)  F 
--s  E s  - -  m - i e  (3.5) 

The second term of the commutator vanishes, since only [ S ) =  [N) 
contributes, but <01gNIN)=0. Now the S states must have the same 
quantum number as a V-particle, and since (01 gvl U) = 0 we are left with 
the N + 0 scattering states. We have then 

r--- E l <OlgvlNO'~)<NO'~ (3.6) 
k 

where we shall take INO,~) to mean 'out' states. We observe that two new 
matrix elements occur, and we define 

(2~f2) 1'2 
Q(og) ~ u(og) <0[gv(0)l NO,o) (3.7) 

and 
R(co) _= (2~ u(o~) (NO'~ B) (3.8) 

Let us consider R(w). We contract the N-particle and with the help of the 
definition of the asymptotic states arrive at the expression 

+co 
z ~  

. e ( ~ )  = u(og------~ -- exp (imt) dt(O~, I [gN(t), gN(0)] O(t)l B) (3.9) 

where the equal-time commutator vanishes. Inserting a complete set of 
states and performing the time integrals given 

R(co) (2c~ B)  I +  1 u(~o) (O,o'gN' V) (V'gN' [ ] 
(2o9f2)~/2 ,K~ ~ [ 1 o___Z~0] /_,, <Oolg.INOo,><NOo,lgNIB> ~ , ,_ -_ i  + 

(3.10) 
Since 

and 

(2o~f2) ~:2 
(-) u(co) (OdgN(O)lV)=g 

<V[g,(O)l B)  = r 
we can write R(ro) as 

1 1 
R(co) = gF [~o + -~-o] 

[ 1  ] b 1 4 
~ ,  , 2 , o ' . _ : ' ~  - - 

(3.11) 
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The matrix element (0 d gv(0)] NO~,) can be converted into known functions 
and to do this we define 

(2COO) 1/2 
D(CO') - u ( o J ~  (0~lgN(0)l NO~,> (3.12) 

Contracting the 0-particle in the left we are led to the expansion 
+ o 0  

= i f dt exp (iCOt) (01 [J(t), gN(0)] O(t) I NO,o,) - g(0[r NO~,> D(CO') 
- - o o  

(3.13) 
where 

( d )  (2COt2) '/2 
j(t) --- -i-ft + CO ak(t) u(CO) "- --gr ~v(t) 

and the second term comes from the equal time commutator. Inserting a 
complete set of states in the first term and carrying out the time integration 
we find that both parts of the commutator vanish, since only one-particle 
states contribute. The second term can be related to N + 0 scattering phase 
shifts. Indeed, 

u(CO) [A exp [-/3(co)] sin 6(CO)1 
D(CO) -- (2~-~1/2 [ ,~ u2(~o)(CO2, #2) J (3.14) 

Expansions for 6(co) in terms of the function fl(co) are known (Goldberger & 
Treiman, 1959). Letting ~ -> co and using (3.14), (3.11) becomes: 

R(CO) = 

1 1 /exp 
(3.15) 

We suppose COo < 0. We now proceed to solve this integral equation. Intro- 
duce 

co 

i f  [ 1 +  1 ]  exp[zl(z)lF(z)=2-~i dCO' exp[-i6(CO')]sin6(CO')R(CO')L-~-------z ~ - ~ o J  

(3.16) 
where 

and 

Define 

co 

, 1  A ( z ) = l f  rico' exp [i6 (co')] [ - ~ 1  z + ----Z~o] (3.17) 

(3.18) 
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Then 

exp [+(to)] F+(to) - exp [A - (o9)] F -  (to) = exp [i6(to)] sin 6(to) R(to) (3.19) 

and 

R(to) = gF[l  +-lo] + 2iexp [A+(og)]F+(to ) (3.20) 

Thus 

exp [A +(to)] F+(to) - exp [A_(o9)] F_(to) = exp [-i6(to)] sin 6(to) gF [1 + 1__1 
Lto tooJ 

+[1-exP~i2i6(to)]]2iexp[A+(co)]F+(to)  

This gives 

F+(to) - F -  (to) = exp [-~(to)] sin 6(to) [ l  + 1 ]  (3.21) 

where 
co 

n u - - t8 x + o~' (3.22) 
/t 

Thus 
eo 

1 
F(z)=gl-' (A+ ~zlrt J f d~'exp + to • + t o o ,  ~' --~o]} 

,It 

(3.23) 

The arbitrary constant,4 is to be so selected that the asymptotic behaviour of  
F(z) obtained from (3.23) is the same as that obtained from (28).t Using 
(2.23) we see that 

- #(too) 1 

So that 

- p t  ,L~ogr  I-1 ~K] R(to) 1 --~to, I.--7 + (3.24) 

where 
Z 2 

Substituting this expression in (3.16) and remembering that 

[ Z )] and 1 - fl(to) -+ Z, lto[ -+ oo exp [A+(oo)] --- 1 - ~ too  

t I would like to thank Prof. J. Bronzan for pointing out the importance of the 
constant A. 
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by taking the limit 1o~1 ~ 0o and equating the results for 
from equations (3.16) and (3.23) we get the equation 

153 

[F+(en)] I~ P~ 

enoZ ~ ] 1 -/~(eno)] 

-- "gF1--flZ(---~~176 

+g'/~--o~ + ~-oz enoZ ~ ! 

which determines A. Substituting this in (3.24) gives 

R(~o) 1 - ~ ( e n )  To + eno 2(1 - ~(eno)) - Z (3.25) 

The matrix element Q(en) in (3.7) has been evaluated by Goldberger & 
Treiman (1959), and their result is 

g * 

Rewriting (3.6) as (in the limit ~ -~ ~) 

r = ~ den uZ(en) (en2 _/~2)1/2 0(en) R(en) 
co 

and using (3.25) and (3.26) gives 
t ~  

l /  d~0 im[1 _ ~ ] [ 1  + 1 ]  7 - -  

1 n 
/L 

which is equivalent to 
1 - / ~ ( ~ O o )  = -~(eno) 

as can be easily verified. 
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